直入正题!
Flink和Spark类似,也是一种一站式处理的框架;既可以进行批处理(DataSet),也可以进行实时处理(DataStream)。
所以下面将Flink的算子分为两大类:一类是DataSet,一类是DataStream。
DataSet
一、Source算子
1. fromCollection
fromCollection:从本地集合读取数据
例:
val env = ExecutionEnvironment. getExecutionEnvironment
val textDataSet: DataSet [ String ] = env. fromCollection (
List ( "1,张三" , "2,李四" , "3,王五" , "4,赵六" )
val env = ExecutionEnvironment.getExecutionEnvironment
val textDataSet: DataSet[String] = env.fromCollection(
List("1,张三", "2,李四", "3,王五", "4,赵六")
)
val env = ExecutionEnvironment.getExecutionEnvironment
val textDataSet: DataSet[String] = env.fromCollection(
List("1,张三", "2,李四", "3,王五", "4,赵六")
)
2. readTextFile
readTextFile:从文件中读取
val textDataSet: DataSet [ String ] = env. readTextFile ( "/data/a.txt" )
val textDataSet: DataSet[String] = env.readTextFile("/data/a.txt")
val textDataSet: DataSet[String] = env.readTextFile("/data/a.txt")
3. readTextFile:遍历目录
readTextFile可以对一个文件目录内的所有文件,包括所有子目录中的所有文件的遍历访问方式
val parameters = new Configuration
// recursive.file.enumeration 开启递归
parameters. setBoolean ( "recursive.file.enumeration" , true )
val file = env. readTextFile ( "/data" ) . withParameters ( parameters )
val parameters = new Configuration
// recursive.file.enumeration 开启递归
parameters.setBoolean("recursive.file.enumeration", true)
val file = env.readTextFile("/data").withParameters(parameters)
val parameters = new Configuration
// recursive.file.enumeration 开启递归
parameters.setBoolean("recursive.file.enumeration", true)
val file = env.readTextFile("/data").withParameters(parameters)
4. readTextFile:读取压缩文件
对于以下压缩类型,不需要指定任何额外的inputformat方法,flink可以自动识别并且解压。但是,压缩文件可能不会并行读取,可能是顺序读取的,这样可能会影响作业的可伸缩性。
因格式问题,此处显示不全,完整的表格内容可到公号【五分钟学大数据】查看
val file = env. readTextFile ( "/data/file.gz" )
val file = env.readTextFile("/data/file.gz")
val file = env.readTextFile("/data/file.gz")
二、Transform转换算子
因为Transform算子基于Source算子操作,所以首先构建Flink执行环境及Source算子,后续Transform算子操作基于此:
val env = ExecutionEnvironment. getExecutionEnvironment
val textDataSet: DataSet [ String ] = env. fromCollection (
List ( "张三,1" , "李四,2" , "王五,3" , "张三,4" )
val env = ExecutionEnvironment.getExecutionEnvironment
val textDataSet: DataSet[String] = env.fromCollection(
List("张三,1", "李四,2", "王五,3", "张三,4")
)
val env = ExecutionEnvironment.getExecutionEnvironment
val textDataSet: DataSet[String] = env.fromCollection(
List("张三,1", "李四,2", "王五,3", "张三,4")
)
1. map
将DataSet中的每一个元素转换为另外一个元素
// 使用map将List转换为一个Scala的样例类
case class User ( name: String, id: String )
val userDataSet: DataSet [ User ] = textDataSet. map {
val fieldArr = text. split ( "," )
User ( fieldArr ( 0 ) , fieldArr ( 1 ))
// 使用map将List转换为一个Scala的样例类
case class User(name: String, id: String)
val userDataSet: DataSet[User] = textDataSet.map {
text =>
val fieldArr = text.split(",")
User(fieldArr(0), fieldArr(1))
}
userDataSet.print()
// 使用map将List转换为一个Scala的样例类
case class User(name: String, id: String)
val userDataSet: DataSet[User] = textDataSet.map {
text =>
val fieldArr = text.split(",")
User(fieldArr(0), fieldArr(1))
}
userDataSet.print()
2. flatMap
将DataSet中的每一个元素转换为0…n个元素。
val result = textDataSet. flatMap ( line = > line )
. groupBy ( 0 ) // 根据第一个元素,进行分组
. sum ( 1 ) // 根据第二个元素,进行聚合求值
// 使用flatMap操作,将集合中的数据:
// 根据第一个元素,进行分组
// 根据第二个元素,进行聚合求值
val result = textDataSet.flatMap(line => line)
.groupBy(0) // 根据第一个元素,进行分组
.sum(1) // 根据第二个元素,进行聚合求值
result.print()
// 使用flatMap操作,将集合中的数据:
// 根据第一个元素,进行分组
// 根据第二个元素,进行聚合求值
val result = textDataSet.flatMap(line => line)
.groupBy(0) // 根据第一个元素,进行分组
.sum(1) // 根据第二个元素,进行聚合求值
result.print()
3. mapPartition
将一个分区中的元素转换为另一个元素
// 使用mapPartition操作,将List转换为一个scala的样例类
case class User ( name: String, id: String )
val result: DataSet [ User ] = textDataSet. mapPartition ( line = > {
line. map ( index = > User ( index. _1 , index. _2 ))
// 使用mapPartition操作,将List转换为一个scala的样例类
case class User(name: String, id: String)
val result: DataSet[User] = textDataSet.mapPartition(line => {
line.map(index => User(index._1, index._2))
})
result.print()
// 使用mapPartition操作,将List转换为一个scala的样例类
case class User(name: String, id: String)
val result: DataSet[User] = textDataSet.mapPartition(line => {
line.map(index => User(index._1, index._2))
})
result.print()
4. filter
过滤出来一些符合条件的元素,返回boolean值为true 的元素
val source: DataSet [ String ] = env. fromElements ( "java" , "scala" , "java" )
val filter:DataSet [ String ] = source. filter ( line = > line. contains ( "java" )) //过滤出带java的数据
val source: DataSet[String] = env.fromElements("java", "scala", "java")
val filter:DataSet[String] = source.filter(line => line.contains("java"))//过滤出带java的数据
filter.print()
val source: DataSet[String] = env.fromElements("java", "scala", "java")
val filter:DataSet[String] = source.filter(line => line.contains("java"))//过滤出带java的数据
filter.print()
5. reduce
可以对一个dataset或者一个group来进行聚合计算,最终聚合成一个元素
val source = env. fromElements (( "java" , 1 ) , ( "scala" , 1 ) , ( "java" , 1 ))
val mapData: DataSet [( String, Int )] = source. map ( line = > line )
val groupData = mapData. groupBy ( _. _1 )
val reduceData = groupData. reduce (( x, y ) = > ( x. _1 , x. _2 + y. _2 ))
// 使用 fromElements 构建数据源
val source = env.fromElements(("java", 1), ("scala", 1), ("java", 1))
// 使用map转换成DataSet元组
val mapData: DataSet[(String, Int)] = source.map(line => line)
// 根据首个元素分组
val groupData = mapData.groupBy(_._1)
// 使用reduce聚合
val reduceData = groupData.reduce((x, y) => (x._1, x._2 + y._2))
// 打印测试
reduceData.print()
// 使用 fromElements 构建数据源
val source = env.fromElements(("java", 1), ("scala", 1), ("java", 1))
// 使用map转换成DataSet元组
val mapData: DataSet[(String, Int)] = source.map(line => line)
// 根据首个元素分组
val groupData = mapData.groupBy(_._1)
// 使用reduce聚合
val reduceData = groupData.reduce((x, y) => (x._1, x._2 + y._2))
// 打印测试
reduceData.print()
6. reduceGroup
将一个dataset或者一个group聚合成一个或多个元素 。 reduceGroup是reduce的一种优化方案; 它会先分组reduce,然后在做整体的reduce;这样做的好处就是可以减少网络IO
val source: DataSet [( String, Int )] = env. fromElements (( "java" , 1 ) , ( "scala" , 1 ) , ( "java" , 1 ))
val groupData = source. groupBy ( _. _1 )
val result: DataSet [( String, Int )] = groupData. reduceGroup {
( in : Iterator [( String, Int )] , out: Collector [( String, Int )]) = >
val tuple = in . reduce (( x, y ) = > ( x. _1 , x. _2 + y. _2 ))
// 使用 fromElements 构建数据源
val source: DataSet[(String, Int)] = env.fromElements(("java", 1), ("scala", 1), ("java", 1))
// 根据首个元素分组
val groupData = source.groupBy(_._1)
// 使用reduceGroup聚合
val result: DataSet[(String, Int)] = groupData.reduceGroup {
(in: Iterator[(String, Int)], out: Collector[(String, Int)]) =>
val tuple = in.reduce((x, y) => (x._1, x._2 + y._2))
out.collect(tuple)
}
// 打印测试
result.print()
// 使用 fromElements 构建数据源
val source: DataSet[(String, Int)] = env.fromElements(("java", 1), ("scala", 1), ("java", 1))
// 根据首个元素分组
val groupData = source.groupBy(_._1)
// 使用reduceGroup聚合
val result: DataSet[(String, Int)] = groupData.reduceGroup {
(in: Iterator[(String, Int)], out: Collector[(String, Int)]) =>
val tuple = in.reduce((x, y) => (x._1, x._2 + y._2))
out.collect(tuple)
}
// 打印测试
result.print()
7. minBy和maxBy
选择具有最小值或最大值的元素
// 使用minBy操作,求List中每个人的最小值
// List("张三,1", "李四,2", "王五,3", "张三,4")
case class User ( name: String, id: String )
val text: DataSet [ User ] = textDataSet. mapPartition ( line = > {
line. map ( index = > User ( index. _1 , index. _2 ))
// 使用minBy操作,求List中每个人的最小值
// List("张三,1", "李四,2", "王五,3", "张三,4")
case class User(name: String, id: String)
// 将List转换为一个scala的样例类
val text: DataSet[User] = textDataSet.mapPartition(line => {
line.map(index => User(index._1, index._2))
})
val result = text
.groupBy(0) // 按照姓名分组
.minBy(1) // 每个人的最小值
// 使用minBy操作,求List中每个人的最小值
// List("张三,1", "李四,2", "王五,3", "张三,4")
case class User(name: String, id: String)
// 将List转换为一个scala的样例类
val text: DataSet[User] = textDataSet.mapPartition(line => {
line.map(index => User(index._1, index._2))
})
val result = text
.groupBy(0) // 按照姓名分组
.minBy(1) // 每个人的最小值
8. Aggregate
在数据集上进行聚合求最值 (最大值、最小值)
val data = new mutable. MutableList [( Int, String, Double )]
data.+= (( 1 , "yuwen" , 89.0 ))
data.+= (( 2 , "shuxue" , 92.2 ))
data.+= (( 3 , "yuwen" , 89.99 ))
val input: DataSet [( Int, String, Double )] = env. fromCollection ( data )
val value = input. groupBy ( 1 )
. aggregate ( Aggregations. MAX , 2 )
val data = new mutable.MutableList[(Int, String, Double)]
data.+=((1, "yuwen", 89.0))
data.+=((2, "shuxue", 92.2))
data.+=((3, "yuwen", 89.99))
// 使用 fromElements 构建数据源
val input: DataSet[(Int, String, Double)] = env.fromCollection(data)
// 使用group执行分组操作
val value = input.groupBy(1)
// 使用aggregate求最大值元素
.aggregate(Aggregations.MAX, 2)
// 打印测试
value.print()
val data = new mutable.MutableList[(Int, String, Double)]
data.+=((1, "yuwen", 89.0))
data.+=((2, "shuxue", 92.2))
data.+=((3, "yuwen", 89.99))
// 使用 fromElements 构建数据源
val input: DataSet[(Int, String, Double)] = env.fromCollection(data)
// 使用group执行分组操作
val value = input.groupBy(1)
// 使用aggregate求最大值元素
.aggregate(Aggregations.MAX, 2)
// 打印测试
value.print()
Aggregate只能作用于元组上
注意: 要使用aggregate,只能使用字段索引名或索引名称来进行分组 groupBy(0)
,否则会报一下错误: Exception in thread “main” java.lang.UnsupportedOperationException: Aggregate does not support grouping with KeySelector functions, yet.
9. distinct
去除重复的数据
// 使用distinct操作,根据科目去除集合中重复的元组数据
val value: DataSet [( Int, String, Double )] = input. distinct ( 1 )
// 数据源使用上一题的
// 使用distinct操作,根据科目去除集合中重复的元组数据
val value: DataSet[(Int, String, Double)] = input.distinct(1)
value.print()
// 数据源使用上一题的
// 使用distinct操作,根据科目去除集合中重复的元组数据
val value: DataSet[(Int, String, Double)] = input.distinct(1)
value.print()
10. first
取前N个数
input.first(2) // 取前两个数
11. join
将两个DataSet按照一定条件连接到一起,形成新的DataSet
// DataSet[(Int, String,String, Double)]
val joinData = s1. join ( s2 ) // s1数据集 join s2数据集
. where ( 0 ) . equalTo ( 0 ) { // join的条件
( s1, s2 ) = > ( s1. _1 , s1. _2 , s2. _2 , s1. _3 )
// s1 和 s2 数据集格式如下:
// DataSet[(Int, String,String, Double)]
val joinData = s1.join(s2) // s1数据集 join s2数据集
.where(0).equalTo(0) { // join的条件
(s1, s2) => (s1._1, s1._2, s2._2, s1._3)
}
// s1 和 s2 数据集格式如下:
// DataSet[(Int, String,String, Double)]
val joinData = s1.join(s2) // s1数据集 join s2数据集
.where(0).equalTo(0) { // join的条件
(s1, s2) => (s1._1, s1._2, s2._2, s1._3)
}
12. leftOuterJoin
左外连接,左边的Dataset中的每一个元素,去连接右边的元素
此外还有:
rightOuterJoin:右外连接,左边的Dataset中的每一个元素,去连接左边的元素
fullOuterJoin:全外连接,左右两边的元素,全部连接
下面以 leftOuterJoin 进行示例:
val data1 = ListBuffer [ Tuple2 [ Int,String ]]()
data1. append (( 1 , "zhangsan" ))
data1. append (( 3 , "wangwu" ))
data1. append (( 4 , "zhaoliu" ))
val data2 = ListBuffer [ Tuple2 [ Int,String ]]()
data2. append (( 1 , "beijing" ))
data2. append (( 2 , "shanghai" ))
data2. append (( 4 , "guangzhou" ))
val text1 = env. fromCollection ( data1 )
val text2 = env. fromCollection ( data2 )
text1. leftOuterJoin ( text2 ) . where ( 0 ) . equalTo ( 0 ) . apply (( first,second ) = >{
( first. _1 ,first. _2 , "null" )
( first. _1 ,first. _2 ,second. _2 )
val data1 = ListBuffer[Tuple2[Int,String]]()
data1.append((1,"zhangsan"))
data1.append((2,"lisi"))
data1.append((3,"wangwu"))
data1.append((4,"zhaoliu"))
val data2 = ListBuffer[Tuple2[Int,String]]()
data2.append((1,"beijing"))
data2.append((2,"shanghai"))
data2.append((4,"guangzhou"))
val text1 = env.fromCollection(data1)
val text2 = env.fromCollection(data2)
text1.leftOuterJoin(text2).where(0).equalTo(0).apply((first,second)=>{
if(second==null){
(first._1,first._2,"null")
}else{
(first._1,first._2,second._2)
}
}).print()
val data1 = ListBuffer[Tuple2[Int,String]]()
data1.append((1,"zhangsan"))
data1.append((2,"lisi"))
data1.append((3,"wangwu"))
data1.append((4,"zhaoliu"))
val data2 = ListBuffer[Tuple2[Int,String]]()
data2.append((1,"beijing"))
data2.append((2,"shanghai"))
data2.append((4,"guangzhou"))
val text1 = env.fromCollection(data1)
val text2 = env.fromCollection(data2)
text1.leftOuterJoin(text2).where(0).equalTo(0).apply((first,second)=>{
if(second==null){
(first._1,first._2,"null")
}else{
(first._1,first._2,second._2)
}
}).print()
13. cross
交叉操作,通过形成这个数据集和其他数据集的笛卡尔积,创建一个新的数据集
和join类似,但是这种交叉操作会产生笛卡尔积,在数据比较大的时候,是非常消耗内存的操作
val cross = input1. cross ( input2 ){
( input1 , input2 ) = > ( input1. _1 ,input1. _2 ,input1. _3 ,input2. _2 )
val cross = input1.cross(input2){
(input1 , input2) => (input1._1,input1._2,input1._3,input2._2)
}
cross.print()
val cross = input1.cross(input2){
(input1 , input2) => (input1._1,input1._2,input1._3,input2._2)
}
cross.print()
14. union
联合操作,创建包含来自该数据集和其他数据集的元素的新数据集,不会去重
val unionData: DataSet [ String ] = elements1. union ( elements2 ) . union ( elements3 )
val value = unionData. distinct ( line = > line )
val unionData: DataSet[String] = elements1.union(elements2).union(elements3)
// 去除重复数据
val value = unionData.distinct(line => line)
val unionData: DataSet[String] = elements1.union(elements2).union(elements3)
// 去除重复数据
val value = unionData.distinct(line => line)
15. rebalance
Flink也有数据倾斜的时候,比如当前有数据量大概10亿条数据需要处理,在处理过程中可能会发生如图所示的状况:
这个时候本来总体数据量只需要10分钟解决的问题,出现了数据倾斜,机器1上的任务需要4个小时才能完成,那么其他3台机器执行完毕也要等待机器1执行完毕后才算整体将任务完成; 所以在实际的工作中,出现这种情况比较好的解决方案就是接下来要介绍的—rebalance (内部使用round robin方法将数据均匀打散。这对于数据倾斜时是很好的选择。)
val rebalance = filterData. rebalance ()
// 使用rebalance操作,避免数据倾斜
val rebalance = filterData.rebalance()
// 使用rebalance操作,避免数据倾斜
val rebalance = filterData.rebalance()
16. partitionByHash
按照指定的key进行hash分区
val data = new mutable. MutableList [( Int, Long, String )]
data.+= (( 2 , 2L, "Hello" ))
data.+= (( 3 , 2L, "Hello world" ))
val collection = env. fromCollection ( data )
val unique = collection. partitionByHash ( 1 ) . mapPartition {
line. map ( x = > ( x. _1 , x. _2 , x. _3 ))
unique. writeAsText ( "hashPartition" , WriteMode. NO_OVERWRITE )
val data = new mutable.MutableList[(Int, Long, String)]
data.+=((1, 1L, "Hi"))
data.+=((2, 2L, "Hello"))
data.+=((3, 2L, "Hello world"))
val collection = env.fromCollection(data)
val unique = collection.partitionByHash(1).mapPartition{
line =>
line.map(x => (x._1 , x._2 , x._3))
}
unique.writeAsText("hashPartition", WriteMode.NO_OVERWRITE)
env.execute()
val data = new mutable.MutableList[(Int, Long, String)]
data.+=((1, 1L, "Hi"))
data.+=((2, 2L, "Hello"))
data.+=((3, 2L, "Hello world"))
val collection = env.fromCollection(data)
val unique = collection.partitionByHash(1).mapPartition{
line =>
line.map(x => (x._1 , x._2 , x._3))
}
unique.writeAsText("hashPartition", WriteMode.NO_OVERWRITE)
env.execute()
17. partitionByRange
根据指定的key对数据集进行范围分区
val data = new mutable. MutableList [( Int, Long, String )]
data.+= (( 2 , 2L, "Hello" ))
data.+= (( 3 , 2L, "Hello world" ))
data.+= (( 4 , 3L, "Hello world, how are you?" ))
val collection = env. fromCollection ( data )
val unique = collection. partitionByRange ( x = > x. _1 ) . mapPartition ( line = > line. map {
unique. writeAsText ( "rangePartition" , WriteMode. OVERWRITE )
val data = new mutable.MutableList[(Int, Long, String)]
data.+=((1, 1L, "Hi"))
data.+=((2, 2L, "Hello"))
data.+=((3, 2L, "Hello world"))
data.+=((4, 3L, "Hello world, how are you?"))
val collection = env.fromCollection(data)
val unique = collection.partitionByRange(x => x._1).mapPartition(line => line.map{
x=>
(x._1 , x._2 , x._3)
})
unique.writeAsText("rangePartition", WriteMode.OVERWRITE)
env.execute()
val data = new mutable.MutableList[(Int, Long, String)]
data.+=((1, 1L, "Hi"))
data.+=((2, 2L, "Hello"))
data.+=((3, 2L, "Hello world"))
data.+=((4, 3L, "Hello world, how are you?"))
val collection = env.fromCollection(data)
val unique = collection.partitionByRange(x => x._1).mapPartition(line => line.map{
x=>
(x._1 , x._2 , x._3)
})
unique.writeAsText("rangePartition", WriteMode.OVERWRITE)
env.execute()
18. sortPartition
根据指定的字段值进行分区的排序
val data = new mutable. MutableList [( Int, Long, String )]
data.+= (( 2 , 2L, "Hello" ))
data.+= (( 3 , 2L, "Hello world" ))
data.+= (( 4 , 3L, "Hello world, how are you?" ))
val ds = env. fromCollection ( data )
.map { x = > x } . setParallelism ( 2 )
. sortPartition ( 1 , Order. DESCENDING ) //第一个参数代表按照哪个字段进行分区
. mapPartition ( line = > line )
val data = new mutable.MutableList[(Int, Long, String)]
data.+=((1, 1L, "Hi"))
data.+=((2, 2L, "Hello"))
data.+=((3, 2L, "Hello world"))
data.+=((4, 3L, "Hello world, how are you?"))
val ds = env.fromCollection(data)
val result = ds
.map { x => x }.setParallelism(2)
.sortPartition(1, Order.DESCENDING)//第一个参数代表按照哪个字段进行分区
.mapPartition(line => line)
.collect()
println(result)
val data = new mutable.MutableList[(Int, Long, String)]
data.+=((1, 1L, "Hi"))
data.+=((2, 2L, "Hello"))
data.+=((3, 2L, "Hello world"))
data.+=((4, 3L, "Hello world, how are you?"))
val ds = env.fromCollection(data)
val result = ds
.map { x => x }.setParallelism(2)
.sortPartition(1, Order.DESCENDING)//第一个参数代表按照哪个字段进行分区
.mapPartition(line => line)
.collect()
println(result)
三、Sink算子
1. collect
将数据输出到本地集合
result.collect()
2. writeAsText
将数据输出到文件
Flink支持多种存储设备上的文件,包括本地文件,hdfs文件等
Flink支持多种文件的存储格式,包括text文件,CSV文件等
result. writeAsText ( "/data/a" , WriteMode. OVERWRITE )
result. writeAsText ( "hdfs://node01:9000/data/a" , WriteMode. OVERWRITE )
// 将数据写入本地文件
result.writeAsText("/data/a", WriteMode.OVERWRITE)
// 将数据写入HDFS
result.writeAsText("hdfs://node01:9000/data/a", WriteMode.OVERWRITE)
// 将数据写入本地文件
result.writeAsText("/data/a", WriteMode.OVERWRITE)
// 将数据写入HDFS
result.writeAsText("hdfs://node01:9000/data/a", WriteMode.OVERWRITE)
DataStream
和DataSet一样,DataStream也包括一系列的Transformation操作
一、Source算子
Flink可以使用 StreamExecutionEnvironment.addSource(source) 来为我们的程序添加数据来源。 Flink 已经提供了若干实现好了的 source functions,当然我们也可以通过实现 SourceFunction 来自定义非并行的source或者实现 ParallelSourceFunction 接口或者扩展 RichParallelSourceFunction 来自定义并行的 source。
Flink在流处理上的source和在批处理上的source基本一致。大致有4大类:
基于本地集合 的source(Collection-based-source)
基于文件 的source(File-based-source)- 读取文本文件,即符合 TextInputFormat 规范的文件,并将其作为字符串返回
基于网络套接字 的source(Socket-based-source)- 从 socket 读取。元素可以用分隔符切分。
自定义 的source(Custom-source)
下面使用addSource将Kafka数据写入Flink为例:
如果需要外部数据源对接,可使用addSource,如将Kafka数据写入Flink, 先引入依赖:
< !-- https: //mvnrepository.com/artifact/org.apache.flink/flink-connector-kafka-0.11 -->
< groupId > org. apache . flink < /groupId >
< artifactId > flink-connector-kafka- 0.11 _2. 11 < /artifactId >
< version > 1.10 . 0 < /version >
<!-- https://mvnrepository.com/artifact/org.apache.flink/flink-connector-kafka-0.11 -->
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-connector-kafka-0.11_2.11</artifactId>
<version>1.10.0</version>
</dependency>
<!-- https://mvnrepository.com/artifact/org.apache.flink/flink-connector-kafka-0.11 -->
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-connector-kafka-0.11_2.11</artifactId>
<version>1.10.0</version>
</dependency>
将Kafka数据写入Flink:
val properties = new Properties ()
properties. setProperty ( "bootstrap.servers" , "localhost:9092" )
properties. setProperty ( "group.id" , "consumer-group" )
properties. setProperty ( "key.deserializer" , "org.apache.kafka.common.serialization.StringDeserializer" )
properties. setProperty ( "value.deserializer" , "org.apache.kafka.common.serialization.StringDeserializer" )
properties. setProperty ( "auto.offset.reset" , "latest" )
val source = env. addSource ( new FlinkKafkaConsumer011 [ String ]( "sensor" , new SimpleStringSchema () , properties ))
val properties = new Properties()
properties.setProperty("bootstrap.servers", "localhost:9092")
properties.setProperty("group.id", "consumer-group")
properties.setProperty("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer")
properties.setProperty("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer")
properties.setProperty("auto.offset.reset", "latest")
val source = env.addSource(new FlinkKafkaConsumer011[String]("sensor", new SimpleStringSchema(), properties))
val properties = new Properties()
properties.setProperty("bootstrap.servers", "localhost:9092")
properties.setProperty("group.id", "consumer-group")
properties.setProperty("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer")
properties.setProperty("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer")
properties.setProperty("auto.offset.reset", "latest")
val source = env.addSource(new FlinkKafkaConsumer011[String]("sensor", new SimpleStringSchema(), properties))
基于网络套接字的:
val source = env. socketTextStream ( "IP" , PORT )
val source = env.socketTextStream("IP", PORT)
val source = env.socketTextStream("IP", PORT)
二、Transform转换算子
1. map
将DataSet中的每一个元素转换为另外一个元素
dataStream. map { x = > x * 2 }
dataStream.map { x => x * 2 }
dataStream.map { x => x * 2 }
2. FlatMap
采用一个数据元并生成零个,一个或多个数据元。将句子分割为单词的flatmap函数
dataStream. flatMap { str = > str. split ( " " ) }
dataStream.flatMap { str => str.split(" ") }
dataStream.flatMap { str => str.split(" ") }
3. Filter
计算每个数据元的布尔函数,并保存函数返回true的数据元。过滤掉零值的过滤器
dataStream. filter { _ != 0 }
dataStream.filter { _ != 0 }
dataStream.filter { _ != 0 }
4. KeyBy
逻辑上将流分区为不相交的分区。具有相同Keys的所有记录都分配给同一分区。在内部,keyBy()是使用散列分区实现的。指定键有不同的方法。
此转换返回KeyedStream,其中包括使用被Keys化状态所需的KeyedStream。
dataStream.keyBy(0)
5. Reduce
被Keys化数据流上的“滚动”Reduce。将当前数据元与最后一个Reduce的值组合并发出新值
keyedStream. reduce { _ + _ }
keyedStream.reduce { _ + _ }
keyedStream.reduce { _ + _ }
6. Fold
具有初始值的被Keys化数据流上的“滚动”折叠。将当前数据元与最后折叠的值组合并发出新值
val result: DataStream [ String ] = keyedStream. fold ( "start" )(( str, i ) = > { str + "-" + i })
// 解释:当上述代码应用于序列(1,2,3,4,5)时,输出结果“start-1”,“start-1-2”,“start-1-2-3”,...
val result: DataStream[String] = keyedStream.fold("start")((str, i) => { str + "-" + i })
// 解释:当上述代码应用于序列(1,2,3,4,5)时,输出结果“start-1”,“start-1-2”,“start-1-2-3”,...
val result: DataStream[String] = keyedStream.fold("start")((str, i) => { str + "-" + i })
// 解释:当上述代码应用于序列(1,2,3,4,5)时,输出结果“start-1”,“start-1-2”,“start-1-2-3”,...
7. Aggregations
在被Keys化数据流上滚动聚合。min和minBy之间的差异是min返回最小值,而minBy返回该字段中具有最小值的数据元(max和maxBy相同)。
keyedStream.sum(0);
keyedStream.min(0);
keyedStream.max(0);
keyedStream.minBy(0);
keyedStream.maxBy(0);
keyedStream.sum(0);
keyedStream.min(0);
keyedStream.max(0);
keyedStream.minBy(0);
keyedStream.maxBy(0);
8. Window
可以在已经分区的KeyedStream上定义Windows。Windows根据某些特征(例如,在最后5秒内到达的数据)对每个Keys中的数据进行分组。这里不再对窗口进行详解,有关窗口的完整说明,请查看这篇文章: Flink 中极其重要的 Time 与 Window 详细解析
dataStream. keyBy ( 0 ) . window ( TumblingEventTimeWindows. of ( Time. seconds ( 5 ))) ;
dataStream.keyBy(0).window(TumblingEventTimeWindows.of(Time.seconds(5)));
dataStream.keyBy(0).window(TumblingEventTimeWindows.of(Time.seconds(5)));
9. WindowAll
Windows可以在常规DataStream上定义。Windows根据某些特征(例如,在最后5秒内到达的数据)对所有流事件进行分组。
注意:在许多情况下,这是非并行转换。所有记录将收集在windowAll 算子的一个任务中。
dataStream. windowAll ( TumblingEventTimeWindows. of ( Time. seconds ( 5 )))
dataStream.windowAll(TumblingEventTimeWindows.of(Time.seconds(5)))
dataStream.windowAll(TumblingEventTimeWindows.of(Time.seconds(5)))
10. Window Apply
将一般函数应用于整个窗口。
注意:如果您正在使用windowAll转换,则需要使用AllWindowFunction。
下面是一个手动求和窗口数据元的函数
windowedStream. apply { WindowFunction }
allWindowedStream. apply { AllWindowFunction }
windowedStream.apply { WindowFunction }
allWindowedStream.apply { AllWindowFunction }
windowedStream.apply { WindowFunction }
allWindowedStream.apply { AllWindowFunction }
11. Window Reduce
将函数缩减函数应用于窗口并返回缩小的值
windowedStream. reduce { _ + _ }
windowedStream.reduce { _ + _ }
windowedStream.reduce { _ + _ }
12. Window Fold
将函数折叠函数应用于窗口并返回折叠值
val result: DataStream [ String ] = windowedStream. fold ( "start" , ( str, i ) = > { str + "-" + i })
// 上述代码应用于序列(1,2,3,4,5)时,将序列折叠为字符串“start-1-2-3-4-5”
val result: DataStream[String] = windowedStream.fold("start", (str, i) => { str + "-" + i })
// 上述代码应用于序列(1,2,3,4,5)时,将序列折叠为字符串“start-1-2-3-4-5”
val result: DataStream[String] = windowedStream.fold("start", (str, i) => { str + "-" + i })
// 上述代码应用于序列(1,2,3,4,5)时,将序列折叠为字符串“start-1-2-3-4-5”
13. Union
两个或多个数据流的联合,创建包含来自所有流的所有数据元的新流。注意:如果将数据流与自身联合,则会在结果流中获取两次数据元
dataStream. union ( otherStream1, otherStream2, ... )
dataStream.union(otherStream1, otherStream2, ...)
dataStream.union(otherStream1, otherStream2, ...)
14. Window Join
在给定Keys和公共窗口上连接两个数据流
dataStream. join ( otherStream )
. where (< key selector >) . equalTo (< key selector >)
. window ( TumblingEventTimeWindows. of ( Time. seconds ( 3 )))
. apply ( new JoinFunction () { ... })
dataStream.join(otherStream)
.where(<key selector>).equalTo(<key selector>)
.window(TumblingEventTimeWindows.of(Time.seconds(3)))
.apply (new JoinFunction () {...})
dataStream.join(otherStream)
.where(<key selector>).equalTo(<key selector>)
.window(TumblingEventTimeWindows.of(Time.seconds(3)))
.apply (new JoinFunction () {...})
15. Interval Join
在给定的时间间隔内使用公共Keys关联两个被Key化的数据流的两个数据元e1和e2,以便e1.timestamp + lowerBound <= e2.timestamp <= e1.timestamp + upperBound
am. intervalJoin ( otherKeyedStream )
. between ( Time. milliseconds ( -2 ) , Time. milliseconds ( 2 ))
. upperBoundExclusive ( true )
. lowerBoundExclusive ( true )
. process ( new IntervalJoinFunction () { ... })
am.intervalJoin(otherKeyedStream)
.between(Time.milliseconds(-2), Time.milliseconds(2))
.upperBoundExclusive(true)
.lowerBoundExclusive(true)
.process(new IntervalJoinFunction() {...})
am.intervalJoin(otherKeyedStream)
.between(Time.milliseconds(-2), Time.milliseconds(2))
.upperBoundExclusive(true)
.lowerBoundExclusive(true)
.process(new IntervalJoinFunction() {...})
16. Window CoGroup
在给定Keys和公共窗口上对两个数据流进行Cogroup
dataStream. coGroup ( otherStream )
. window ( TumblingEventTimeWindows. of ( Time. seconds ( 3 )))
. apply ( new CoGroupFunction () { ... })
dataStream.coGroup(otherStream)
.where(0).equalTo(1)
.window(TumblingEventTimeWindows.of(Time.seconds(3)))
.apply (new CoGroupFunction () {...})
dataStream.coGroup(otherStream)
.where(0).equalTo(1)
.window(TumblingEventTimeWindows.of(Time.seconds(3)))
.apply (new CoGroupFunction () {...})
17. Connect
“连接”两个保存其类型的数据流。连接允许两个流之间的共享状态
DataStream < Integer > someStream = ... DataStream < String > otherStream = ... ConnectedStreams < Integer, String > connectedStreams = someStream. connect ( otherStream )
DataStream<Integer> someStream = ... DataStream<String> otherStream = ... ConnectedStreams<Integer, String> connectedStreams = someStream.connect(otherStream)
// ... 代表省略中间操作
DataStream<Integer> someStream = ... DataStream<String> otherStream = ... ConnectedStreams<Integer, String> connectedStreams = someStream.connect(otherStream)
// ... 代表省略中间操作
18. CoMap,CoFlatMap
类似于连接数据流上的map和flatMap
( _ : String ) = > false ) connectedStreams. flatMap (
connectedStreams.map(
(_ : Int) => true,
(_ : String) => false)connectedStreams.flatMap(
(_ : Int) => true,
(_ : String) => false)
connectedStreams.map(
(_ : Int) => true,
(_ : String) => false)connectedStreams.flatMap(
(_ : Int) => true,
(_ : String) => false)
19. Split
根据某些标准将流拆分为两个或更多个流
val split = someDataStream. split (
val split = someDataStream.split(
(num: Int) =>
(num % 2) match {
case 0 => List("even")
case 1 => List("odd")
})
val split = someDataStream.split(
(num: Int) =>
(num % 2) match {
case 0 => List("even")
case 1 => List("odd")
})
20. Select
从拆分流中选择一个或多个流
SplitStream < Integer > split;DataStream < Integer > even = split. select ( "even" ) ;DataStream < Integer > odd = split. select ( "odd" ) ;DataStream < Integer > all = split. select ( "even" , "odd" )
SplitStream<Integer> split;DataStream<Integer> even = split.select("even");DataStream<Integer> odd = split.select("odd");DataStream<Integer> all = split.select("even","odd")
SplitStream<Integer> split;DataStream<Integer> even = split.select("even");DataStream<Integer> odd = split.select("odd");DataStream<Integer> all = split.select("even","odd")
三、Sink算子
支持将数据输出到:
本地文件(参考批处理)
本地集合(参考批处理)
HDFS(参考批处理)
除此之外,还支持:
sink到kafka
sink到mysql
sink到redis
下面以sink到kafka为例:
case class Student ( id: Int, name: String, addr: String, sex: String )
val mapper: ObjectMapper = new ObjectMapper ()
def toJsonString ( T: Object ) : String = {
mapper. registerModule ( DefaultScalaModule )
mapper. writeValueAsString ( T )
def main ( args: Array [ String ]) : Unit = {
val env = StreamExecutionEnvironment. getExecutionEnvironment
val dataStream: DataStream [ Student ] = env. fromElements (
Student ( 8 , "xiaoming" , "beijing biejing" , "female" )
val studentStream: DataStream [ String ] = dataStream. map ( student = >
toJsonString ( student ) // 这里需要显示SerializerFeature中的某一个,否则会报同时匹配两个方法的错误
val prop = new Properties ()
prop. setProperty ( "bootstrap.servers" , "node01:9092" )
val myProducer = new FlinkKafkaProducer011 [ String ]( sinkTopic, new KeyedSerializationSchemaWrapper [ String ]( new SimpleStringSchema ()) , prop )
studentStream. addSink ( myProducer )
env. execute ( "Flink add sink" )
val sinkTopic = "test"
//样例类
case class Student(id: Int, name: String, addr: String, sex: String)
val mapper: ObjectMapper = new ObjectMapper()
//将对象转换成字符串
def toJsonString(T: Object): String = {
mapper.registerModule(DefaultScalaModule)
mapper.writeValueAsString(T)
}
def main(args: Array[String]): Unit = {
//1.创建流执行环境
val env = StreamExecutionEnvironment.getExecutionEnvironment
//2.准备数据
val dataStream: DataStream[Student] = env.fromElements(
Student(8, "xiaoming", "beijing biejing", "female")
)
//将student转换成字符串
val studentStream: DataStream[String] = dataStream.map(student =>
toJsonString(student) // 这里需要显示SerializerFeature中的某一个,否则会报同时匹配两个方法的错误
)
//studentStream.print()
val prop = new Properties()
prop.setProperty("bootstrap.servers", "node01:9092")
val myProducer = new FlinkKafkaProducer011[String](sinkTopic, new KeyedSerializationSchemaWrapper[String](new SimpleStringSchema()), prop)
studentStream.addSink(myProducer)
studentStream.print()
env.execute("Flink add sink")
}
val sinkTopic = "test"
//样例类
case class Student(id: Int, name: String, addr: String, sex: String)
val mapper: ObjectMapper = new ObjectMapper()
//将对象转换成字符串
def toJsonString(T: Object): String = {
mapper.registerModule(DefaultScalaModule)
mapper.writeValueAsString(T)
}
def main(args: Array[String]): Unit = {
//1.创建流执行环境
val env = StreamExecutionEnvironment.getExecutionEnvironment
//2.准备数据
val dataStream: DataStream[Student] = env.fromElements(
Student(8, "xiaoming", "beijing biejing", "female")
)
//将student转换成字符串
val studentStream: DataStream[String] = dataStream.map(student =>
toJsonString(student) // 这里需要显示SerializerFeature中的某一个,否则会报同时匹配两个方法的错误
)
//studentStream.print()
val prop = new Properties()
prop.setProperty("bootstrap.servers", "node01:9092")
val myProducer = new FlinkKafkaProducer011[String](sinkTopic, new KeyedSerializationSchemaWrapper[String](new SimpleStringSchema()), prop)
studentStream.addSink(myProducer)
studentStream.print()
env.execute("Flink add sink")
}
–end–